Download this file

168 lines (140 with data), 8.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from torch import nn
import torch
from functools import reduce
from operator import __add__
import torch.nn.functional as F
from constants import INITIAL_KERNEL_NUM, MIN_DROPOUT, MAX_DROPOUT, CONV1_KERNEL1, CONV1_KERNEL2
## use trial.suggest from optuna to suggest hyperparameters
## https://optuna.readthedocs.io/en/stable/reference/generated/optuna.trial.Trial.html#optuna.trial.Trial
class BasicConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, **kwargs):
super(BasicConv2d, self).__init__()
conv_padding = reduce(__add__, [(k // 2 + (k - 2 * (k // 2)) - 1, k // 2) for k in kernel_size[::-1]])
self.pad = nn.ZeroPad2d(conv_padding)
# ZeroPad2d Output: :math:`(N, C, H_{out}, W_{out})` H_{out} is H_{in} with the padding to be added to either side of height
# ZeroPad2d(2) would add 2 to all 4 sides, ZeroPad2d((1,1,2,0)) would add 1 left, 1 right, 2 above, 0 below
# n_output_features = floor((n_input_features + 2(paddingsize) - convkernel_size) / stride_size) + 1
# above creates same padding
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.pad(x)
x = self.conv(x)
x = F.relu(x, inplace=True)
x = self.bn(x)
return x
class Multi_2D_CNN_block(nn.Module):
def __init__(self, in_channels, num_kernel):
super(Multi_2D_CNN_block, self).__init__()
conv_block = BasicConv2d
self.a = conv_block(in_channels, int(num_kernel / 3), kernel_size=(1, 1))
self.b = nn.Sequential(
conv_block(in_channels, int(num_kernel / 2), kernel_size=(1, 1)),
conv_block(int(num_kernel / 2), int(num_kernel), kernel_size=(3, 3))
)
self.c = nn.Sequential(
conv_block(in_channels, int(num_kernel / 3), kernel_size=(1, 1)),
conv_block(int(num_kernel / 3), int(num_kernel / 2), kernel_size=(3, 3)),
conv_block(int(num_kernel / 2), int(num_kernel), kernel_size=(3, 3))
)
self.out_channels = int(num_kernel / 3) + int(num_kernel) + int(num_kernel)
# I get out_channels is total number of out_channels for a/b/c
self.bn = nn.BatchNorm2d(self.out_channels)
def get_out_channels(self):
return self.out_channels
def forward(self, x):
branch1 = self.a(x)
branch2 = self.b(x)
branch3 = self.c(x)
output = [branch1, branch2, branch3]
return self.bn(torch.cat(output,
1)) # BatchNorm across the concatenation of output channels from final layer of Branch 1/2/3
# ,1 refers to the channel dimension
class BasicConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, **kwargs):
super(BasicConv2d, self).__init__()
conv_padding = reduce(__add__, [(k // 2 + (k - 2 * (k // 2)) - 1, k // 2) for k in kernel_size[::-1]])
self.pad = nn.ZeroPad2d(conv_padding)
# ZeroPad2d Output: :math:`(N, C, H_{out}, W_{out})` H_{out} is H_{in} with the padding to be added to either side of height
# ZeroPad2d(2) would add 2 to all 4 sides, ZeroPad2d((1,1,2,0)) would add 1 left, 1 right, 2 above, 0 below
# n_output_features = floor((n_input_features + 2(paddingsize) - convkernel_size) / stride_size) + 1
# above creates same padding
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.pad(x)
x = self.conv(x)
x = F.relu(x, inplace=True)
x = self.bn(x)
return x
class MyModel(nn.Module):
def __init__(self, trial):
super(MyModel, self).__init__()
multi_2d_cnn = Multi_2D_CNN_block
conv_block = BasicConv2d
# Define the values in constants.py and import them
initial_kernel_num=trial.suggest_categorical("kernel_num", INITIAL_KERNEL_NUM)
dropout = trial.suggest_float('dropout', MIN_DROPOUT, MAX_DROPOUT)
conv1kernel1=trial.suggest_categorical("conv_1_1", CONV1_KERNEL1)
conv1kernel2=trial.suggest_categorical("conv_1_2", CONV1_KERNEL2)
self.conv_1 = conv_block(1, 64, kernel_size=(conv1kernel1, conv1kernel2), stride=(2, 1)) #kernel_size=(7,1), (21,3), (21,1)....
self.multi_2d_cnn_1a = nn.Sequential(
multi_2d_cnn(in_channels=64, num_kernel=initial_kernel_num),
multi_2d_cnn(in_channels=int(initial_kernel_num / 3) + int(initial_kernel_num) + int(initial_kernel_num), num_kernel=initial_kernel_num),
nn.MaxPool2d(kernel_size=(3, 1))
)
self.multi_2d_cnn_1b = nn.Sequential(
multi_2d_cnn(in_channels=int(initial_kernel_num / 3) + int(initial_kernel_num) + int(initial_kernel_num), num_kernel=initial_kernel_num * 1.5),
multi_2d_cnn(in_channels=int(initial_kernel_num * 1.5 / 3) + int(initial_kernel_num * 1.5) + int(initial_kernel_num * 1.5), num_kernel=initial_kernel_num * 1.5),
nn.MaxPool2d(kernel_size=(3, 1))
)
self.multi_2d_cnn_1c = nn.Sequential(
multi_2d_cnn(in_channels=int(initial_kernel_num * 1.5 / 3) + int(initial_kernel_num * 1.5) + int(initial_kernel_num * 1.5), num_kernel=initial_kernel_num * 2),
multi_2d_cnn(in_channels=int(initial_kernel_num * 2 / 3) + int(initial_kernel_num * 2) + int(initial_kernel_num * 2), num_kernel=initial_kernel_num * 2),
nn.MaxPool2d(kernel_size=(2, 1))
)
self.multi_2d_cnn_2a = nn.Sequential(
multi_2d_cnn(in_channels=int(initial_kernel_num * 2 / 3) + int(initial_kernel_num * 2) + int(initial_kernel_num * 2), num_kernel=initial_kernel_num * 3),
multi_2d_cnn(in_channels=int(initial_kernel_num * 3 / 3) + int(initial_kernel_num * 3) + int(initial_kernel_num * 3), num_kernel=initial_kernel_num * 3),
multi_2d_cnn(in_channels=int(initial_kernel_num * 3 / 3) + int(initial_kernel_num * 3) + int(initial_kernel_num * 3), num_kernel=initial_kernel_num * 4),
nn.MaxPool2d(kernel_size=(2, 1))
)
self.multi_2d_cnn_2b = nn.Sequential(
multi_2d_cnn(in_channels=int(initial_kernel_num * 4 / 3) + int(initial_kernel_num * 4) + int(initial_kernel_num * 4), num_kernel=initial_kernel_num * 5),
multi_2d_cnn(in_channels=int(initial_kernel_num * 5 / 3) + int(initial_kernel_num * 5) + int(initial_kernel_num * 5), num_kernel=initial_kernel_num * 6),
multi_2d_cnn(in_channels=int(initial_kernel_num * 6 / 3) + int(initial_kernel_num * 6) + int(initial_kernel_num * 6), num_kernel=initial_kernel_num * 7),
nn.MaxPool2d(kernel_size=(2, 1))
)
self.multi_2d_cnn_2c = nn.Sequential(
multi_2d_cnn(in_channels=int(initial_kernel_num * 7 / 3) + int(initial_kernel_num * 7) + int(initial_kernel_num * 7), num_kernel=initial_kernel_num * 8),
multi_2d_cnn(in_channels=int(initial_kernel_num * 8 / 3) + int(initial_kernel_num * 8) + int(initial_kernel_num * 8), num_kernel=initial_kernel_num * 8),
multi_2d_cnn(in_channels=int(initial_kernel_num * 8 / 3) + int(initial_kernel_num * 8) + int(initial_kernel_num * 8), num_kernel=initial_kernel_num * 8),
nn.MaxPool2d(kernel_size=(2, 1))
)
self.multi_2d_cnn_2d = nn.Sequential(
multi_2d_cnn(in_channels=int(initial_kernel_num * 8 / 3) + int(initial_kernel_num * 8) + int(initial_kernel_num * 8), num_kernel=initial_kernel_num * 12),
multi_2d_cnn(in_channels=int(initial_kernel_num * 12 / 3) + int(initial_kernel_num * 12) + int(initial_kernel_num * 12), num_kernel=initial_kernel_num * 14),
multi_2d_cnn(in_channels=int(initial_kernel_num * 14 / 3) + int(initial_kernel_num * 14) + int(initial_kernel_num * 14), num_kernel=initial_kernel_num * 16),
)
self.output = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Dropout(dropout),
nn.Linear(int(initial_kernel_num * 16 / 3) + int(initial_kernel_num * 16) + int(initial_kernel_num * 16), 1),
# nn.Sigmoid()
)
def forward(self, x):
x = self.conv_1(x)
# N x 1250 x 12 x 64 tensor
x = self.multi_2d_cnn_1a(x)
# N x 416 x 12 x 149 tensor
x = self.multi_2d_cnn_1b(x)
# N x 138 x 12 x 224 tensor
x = self.multi_2d_cnn_1c(x)
# N x 69 x 12 x 298
x = self.multi_2d_cnn_2a(x)
x = self.multi_2d_cnn_2b(x)
x = self.multi_2d_cnn_2c(x)
x = self.multi_2d_cnn_2d(x)
x = self.output(x)
return x